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Abstract. This case study demonstrates the value of classical analysis and to a lesser degree, system 
decomposition for finding a global optimum missed by a sequential linear programming scheme which 
converges to a non-global local minimum. The example is a 20 variable steelmaking problem in which 
the variable annual cost to be minimized is linear, as are all constraints except a non-convex one in 
each blast furnace. The sequential linear programming method gives a proven local minimum, 
although the non-convex nonlinearity prevents any proof of global optima!ity. The proven global 
minimum found here has a 4% lower cost. The local minimum costs only 0.2% per annum less than 
the rather flat global maximum, so the original local minimization only achieved about 5% of the 
economy possible. In the overall plant, the cost saving is over three million US$ (1972) annually. 
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Introduction 

Good industrial optimization has two elements: an accurate engineering model 
and ways, both theoretical and computational, to optimize the model. Studies 
performed by engineers do not always give enough attention to the optimization 
step, especially as the model gets large and nonlinear. Busy developing the 
model, the engineers may neglect the mathematical analysis and place un- 
warranted reliance on the computer code. Such codes, inherited from the 
operations research community, perform so well on the convex problems for 
which they were designed that it is tempting to misapply them to nonconvex 
problems for which they were never intended. This, of course, risks convergence 
to a local optimum which is not globally optimal, a danger than has recently 
encouraged research on algorithms with global optimization properties (Horst & 
Tuy, 1990, henceforth abbreviated H&T). 

The present article, echoing a sentiment expressed earlier in the context of 
engineering design (Wilde, 1978), advises engineers (and operations analysts) to 
invest a little time in preliminary mathematical analysis before turning to the 
computer. This is not so much to save computation costs, although on large 
problems this may be justified, as to make sure that the algorithms are used 
correctly. 

The theory required is not as difficult as that already mastered by most 
engineers during their education, and to the professional mathematician it borders 
on the trivial. What is needed is not sophisticated analysis, but the motivation to 
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look for and exploit such simple properties as monotonicity and convexity (or 
concavity). Thus monotonicity analysis (Papalambros & Wilde, 1988, henceforth 
abbreviated P&W) may find, without computation, many of the constraints that 
must be active at a global minimum, greatly reducing the complexity that can lead 
to computational error. A similar study of convexity and concavity, which for 
reference will be known here as convexity analysis will often determine limits on 
the use of computer codes requiring convexity. 

This approach is illustrated by a case study of a 20 variable iron and steel plant 
taken from a chemical engineering optimization text (Ray & Szekeley, 1973, 
henceforth abbreviated R&S). In the present article, convexity analysis finds the 
globally minimal production schedule to be quite different from, and much better 
than, the plan generated in the original study. The problem with the earlier study 
was that it uncritically applied a gradient projection code to a model which, 
although mostly linear, has concave regions which trapped the convex algorithm 
at a non-optimal local minimum. 

This article is intended, however, to be more than a cautionary tale to 
encourage careful preliminary analysis before turning to the computer. It is also 
meant to provide a detailed model for testing newer global optimization algo- 
rithms requiring neither convexity nor preliminary analysis. This model would be 
a vehicle for testing answers to the research problem which broadly stated is, 
"Should algorithms automate preliminary analysis or seek to avoid it entirely?". 
A good trial for a candidate algorithm would be to start it at the wrong local 
minimum to see if, how and when it finds the global minimum. Especially 
impressive would be any algorithm succeeding on the full 20 variable model in its 
original form with no simplification or decomposition. 

Another goal of this article is to record the transformations needed to expose 
the convex-concave character of the troublesome nonlinearity. Thermodynamical- 
ly motivated, these intrinsic rational transformations have general interest for 
global optimization theory because in this study at least they simplify the analysis 
by separating the variables. The second derivative analysis of the convex-concave 
function is also included, despite its elementary character, because this classical 
method was not mentioned in the H&T survey of d.c. (difference of convex) 
functions. 

The Problem 

This case study is a 20 variable steelmaking problem involving two smelters (blast 
furnaces) feeding iron to two parallel steel furnaces: open hearth and basic 
oxygen. To be determined for a given steel production rate is the distribution of 
ore feed between sintered and pelleted types, together with production rates for 
all four units and feed rates for coke, silicon carbide and steel scrap, as shown in 
Figure 1. The variable annual cost to be minimized is linear, as are all constraints 
except a non-convex one for each blast furnace. 
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Fig. 1. Iron and steel process flow diagram. 

Along with the definitions of the variables, all equations will be listed in the 
sections following, which are organized according to the order in which the 
analysis proceeds. Symbols and variables are listed in the Notation and Nomen- 
clature section. To avoid needless numerical complexity and to permit direct 
comparison of this article with R&S, we follow their practice of expressing mass 
in English tons (908 kg) or M tons (106 English tons) instead of SI units. 

Branch Decomposition by Iron Rate Parametrization 

First the convergent branch structure (Wilde & Beightler, 1967, pp. 399-406) 
where the blast furnaces combine hot iron to feed the steel plants is exploited. 
Fixing the unknown hot iron r a t e s  X 4 and X s would decouple the nonlinear blast 
furnaces from the linear steel plants. This permits each blast furnace to be 
analyzed separately for each value of its hot iron rate, now treated as a coupling 
parameter and consequently symbolized as a capital letter as suggested by P&W 
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(p. 6). This distinguist~es the iron rates from the system variables whose values 
are free to be optimized. Then the total hot iron rate 

H = X 4 + X  s (1) 

becomes a pa ramete r  in the linear program describing the rest of the system, the 

steel plant. 

Solving this system numerically would in principle require solving, for every 
feasible combination of X4 and Xs, a nonlinear optimization problem for each 

blast furnace and a linear program for the remaining steel plant. Preliminary 

convexity analysis will, however,  generate the need for only one single-dimension- 
al root-finding in each blast furnace. 

The Blast Furnace Models 

The mathemat ical  models for the two blast furnaces (henceforth abbreviated BF1 
and BF2) differ not in form but only in a few paramete r  values. The BFs smelt 

iron f rom sintered (iron) ore, pelleted ore and coke (carbon), whose annual feed 

rates are respectively represented by x~, x2 and x3 for BF1 and xs, x6 and x 7 for 
BF2. The variable production costs v 1 and v 2 reflecting the cost of raw materials 
are 

o 1 = 21x~ + 3 0 x  2 + 25x 3 , (2-1) 

u 2 = 21x 5 + 30x 6 + 25x 7 . (2-2) 

R&S assume a BF fixed cost, not needed in this analysis since it is constant,  but 
no other  production cost. 

The  mass balances have the same form for both BFs. 

0.715x 1 + 0.91x 2 = X4,  

0.715x 5 + 0.91x 6 = X s . 

However ,  upper  bounds on the sinter feed rates differ 

x 1 ~< 1.7,  

x s ~< 0 .8 ,  

as do capacity constraints on the iron rates 

0.7~< X4 ~< 1.6,  

(3-1) 

(3-2) 

(4-1) 

(4-2) 

(5-1) 
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0.4 ~ X 8 ~< 0.8 .  (5-2) 

All the preceding relations are linear; the only nonlinearities involve the ratios 
of coke feed to hot iron rates. In BF1 

XB/X4 = 0.411 + 0 .5  exp(-O.7x2/xl)l + 0 . 3 ( 1  - X 4 )  2 , ( 6 - 1 )  

whereas in BF2 the relation is 

x7 /X  8 = 0.511 + 0.4 exp(-O.7x6/x5) ] + 0.35(0.5 - X8) 2 . (6-2) 

Concerning Equations (6-1), R&S say on p. 302, "An  increase  in the fraction of 
pellets tends to reduce the coke rate to a limiting value of 0.4 . . . .  The second 
te rm on the right-hand side indicates that for a fixed pellet-sinter ratio the coke 
rate  shows a minimum at a particular production r a t e - 1  M tons /annum . . . .  " 

Intrinsic Transformation 

Since relations (6) both have the same form, only BF1 will be analyzed in detail. 

BF1, in addition to a coupling paramete r  X4, has three feed variables constrained 
by a linear mass balance (3-1) and a coke rate Equat ion (6-1), leaving one degree 

of f reedom for optimization of the linear cost. Elimination x 2 and x 3 gives a 
nonlinear cost depending only on the variable x I and the parameter  X 4. 

v, = 43X 4 + 7.5 X4(1 - X4) 2 - 2.57x I + 8.73X 4 exp(-O.78X4/x~) .  (7) 

This expression is clarified by a nonlinear change of variable commonly employed 
by chemical engineers. For each BF define the ratio 

rl = x l / X 4 ,  (8-1) 

r2 = x s / X  8 . (8-2)  

Then  division of (7) throughout  by X 4 gives 

u 1 / X  4 = 43 + 7 . 5 ( 1 -  X4) 2 - 2.57r~ + 8.73 e x p ( - 0 . 7 8 / r ~ ) ,  (9) 

which can be optimized with respect to the new system variable rl independently 
of the iron product ion rate X 4. Abbrevia te  

/ 2 1 ( i V l )  =- - 2 . 5 7 r  1 + 8.73 e x p ( - 0 . 7 8 / r l )  (10) 

so that 
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v, =X4143 +7 .5(1  - X 4 )  2 + u l ( r , )  ] . (11) 

Since X 4 is positive, BFI  cost v~ is clearly minimum with respect to rl when ul(rl) 
is also minimum with respect to r 1. 

The three terms in brackets on the right of Equation (11) have the dimensions 

of  cost per  unit mass of iron produced. Thus the ore and coke costs are $43/ton 
when no sinter is used, 7.5(1 - X4) 2 is the additional cost depending on BF flow, 

and u~(r~) represents the unit cost variation which depends on ore composition. 

Equali ty constraints (3) evaluated for x2, x 6 = 0 gives the upper  bound 

r l ,  r 2 < (0.715) - I  = 1.40. (12) 

Since sintered ore does not have to be used, r I and r 2 can take any non-negative 
values satisfying (12). 

Transforming the problem from one involving mass flow rates to one involving 
dimensionless composit ion ratios is a mathematical  manifestation of a thermo- 

dynamic principle. This is that chemical processes depend on intrinsic propert ies 
such as composit ion rather  than extrinsic properties proport ional  to amounts  

present ,  flow rates in this example.  For this physical reason the t ransformation 
used here is called "intrinsic", although its use of a ratio could well lead to its 
characterization by mathematicians as a "rat ional"  transformation.  The intrinsic 

t ransformation is r ecommended  here to optimization modelers as a possible way 
to separate  variables, particularly parameters  from system variables. 

Convexity Analysis 

The composit ion cost function ul(rl) will now be analyzed for convexity by 
studying its first two derivatives in this range. They are 

dul/dr = - 2 . 5 7  + 6 .81r[  2 e x p ( - 0 . 7 8 / r l )  (13) 

and 

d2Ul/dr 2 = 6.81(0.78 - 2 r l ) r l  4 exp(- -O.78/r l ) .  (14) 

The sign of d2ul/dr 2 is the same as that of the linear factor 0 . 7 8 - 2 r  1. Thus 
ul(rl) is convex-concave; convex at the low end of its domain and concave 

elsewhere,  with an inflection at rl = 0.39. 
Over  the domain 0.39 ~< rl ~< 1.42 in which r~ is concave, the global minimum 

must  be at one of the two extremes (H&T,  p. 10). Direct evaluat ion  gives 
u~ (0.39) = 0.135 ~< u~(1.42) = 0.573, indicating an artificially constrained regional 
min imum at the inflection 0.39. The first derivative there certainly cannot be 
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negative or even zero, for this and the negativity of deu: /dr  2 would allow u I to 

decrease locally as r 1 increases. Hence dul/dr~ > 0 at the inflection, ruling it out 
as a candidate for global minimality in the region of convexity 0 ~  < ra ~<0.39. 
Therefore  the global minimum r 1 .  must be in the restricted domain 0 ~< r~* ~< 
0.39 where u~ is known to be convex. By any number of numerical methods the 
global minimum u~* can be found to be at the unique stationary point r~ * = 0.18 

Ul* = u t ( r ~ * ) :  u : (0 .18)=  - 0 . 3 4 8 .  (15-1) 

Equations (8-1), (3-1) and (6-1) give the globally optimal BF1 sinter, pellet and 
coke rates as functions of the as yet undetermined parameter  2(4: 

x 1 = 0.18X 4 ; x 2 = 0.96X 4 ; x 3 = [0.408 + 0.3(1 - Xa)2]X4 . (16-1) 

A similar analysis of BF2 gives a unique inflection at r 2 = 0.385 and the global 
minimum 

u 2 : u2(r2* ) = u2(0.157 ) = - 0 . 3 4 3 .  (15-2) 

As functions of the parameter  X 8 the corresponding feed components are 

x5  : 0 . 1 5 7 X  8 ; x 6 ~- 0 . 9 8 X  8 ; x 7 ~- [ 0 . 5 0 3  Jr 0 . 3 5 ( 0 . 5  - X 8 ) 2 ] X 8  , 

(16-2) 

Figure 2 graphs both u : ( r : )  and u 2 ( r 2 ) .  It is particularly interesting that for 
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both BFs the algorithm of Ray & Szekeley, not being restricted to the convex 
regions converged to the nonglobal local minimum at the upper end of the domain 
of concavity, the very region ruled out by the convexity analysis. The cost saving 
is about 4% in BF1. Worthy of note is that the local minimum costs only 0.2% 
less than the rather flat global maximum. Thus the original local minimization 
only achieved about 5% of the economy possible. The situation in the second 
blast furnace is similar. This costly oversight is a powerful argument for prelimi- 
nary convexity analysis, even at the elementary mathematical level used here. 

Monotonicity and Convexity Analysis of the Hot Iron Rates 

** and ** into the BF c o s t  Substitution of the optimized composition costs u 1 u 2 
functions of Equations (2-1), (3-1) and (6-1) gives expressions cubic in parametric 
hot iron rates 

U 1 = 5 0 . 1 5 X  4 - 15.0X] + 7.5X 3 , 

v 2 = 47.4X 8 - 8.75X28 + 8.75X3s. 

(17-1) 

(17-2) 

To prove monotonicity, shift the origins to the minimum production rates given 
by constraints (5-1): 

Vx = X8 - 0.7 Y2 = H 2 - 0 . 4 .  

The unit cost first derivatives are then 

dv~/dY~ = 40.18 + 1.50Y 1 + 22.5Y~ > 0 ,  (18-1) 

dv2/dY 2 = 46.61 + 3.50Y 2 + 26.25 Y~ > 0.  (18-2) 

Their  positivities prove that the unit costs strictly increase with production rate. 
The rates must therefore satisfy the mass balance with strict equality: 

Y~ + Y2= H -  I.I~- Y>~O. (19) 

Moreover ,  the first derivatives are also strictly increasing, so the separability of 
v b = v I + v 2 implies its strict convexity. 

The actual optimization of the total cost subject to the constraints will be 
performed after the optimizing value of H has been determined. Meanwhile it is 
important  to notice that Equation (18-1) implies that hot iron cannot be produced 
any cheaper than $40.18/ton, the lowest possible cost rate where X~ = 0. That is, 

d ( v ~ * ) / d H  > 40.2. (20) 
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This fact will be needed later to determine H. It remains to determine the best 
value of the parametric hot iron rate H taking the steel plant into account. 

Sub-Optimization of the Steel Plant 

With the total iron rate treated as a parameter, the steel plant becomes complete- 
ly linear. Hence by linear programming it is possible to compute the minimum 
cost schedule for the steel plant for any numerical value of H. Added to the 
corresponding optimal hot iron cost v**(H), this optimal steel plant cost gives the 
best total cost for the H given, so selecting the value H** minimizing this sum 
determines the global minimum cost schedule for the combined iron and steel 
plants. The availability of good linear programming codes makes this the fastest 
practical way to a numerical solution, since the preliminary analysis guarantees 
that the result obtained will be globally optimal. 

There is, however, a surprisingly powerful method available for solving this 
problem analytically, thereby gaining deeper insight into the problem structure. 
The sparsity of the steel plant equations allows using monotonicity analysis 
(Papalambros & Wilde, 1988) to find the complete pattern of constraint activity in 
the two steel furnaces without performing any linear programming computations. 
The linearity of all these constraints permits their solution in closed form, giving 
all variables and the steel plant cost as linear functions of the parametric hot iron 
flow from the blast furnaces. Since the total cost increases monotonically with iron 
rate, the smallest feasible rate is globally optimal. The optimizing value of this 
parameter then completely determines the globally minimal cost production 
schedule. Although the results of the monotonicity analysis will be given in this 
article, the details will be omitted to save space. 

Steel Plant Model 

R&S formulate the steel plant with the twelve variables x 9 through x20 listed in 
the Nomenclature. They then derive and list the model constraints and describe it 
qualitatively in physical and economic terms as an engineer. Here equality 
constraints will be labelled "E",  inequalities, 'T ' .  

First consider the parametric constraints, so called because they involve the 
parameters external to the steel plant, here the finished steel demand (3.0) given 
as a constant and the hot metal rate M given as a coupling parameter to be 
determined later by overall system optimization. The finishing plant yield of 70% 
gives, for the product rate 3.0 specified, one strict equality determining the crude 
steel rates 

x13 + Xa7 = 3.0/0.70 = 4.286 (El)  

and another giving the recycled home scrap production. 
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Xl0 -[- X15 = 0.3(4.286) = 1 . 2 8 6 .  

A third mass balance couples the steel plant to BFs. 

x 9 + x~6 = n .  

(E2) 

(Z3) 

Next consider the non-parametr ic  or local constraints. In the basic oxygen 

furnace (BOF)  there are 

a mass balance X13 = 0.90(x 9 + Sl0 + X l l  ) , (E4) 

a hot iron limit x 9 I> 4(x10 + x H - 12x12 ) , (I1) 

a product ion limit x13 ~< 3.5 ,  (12) 

and an SiC limit x12 ~< x9/24.  (13) 

In R&S Equat ion (8.4.16) the coefficient (24) -1 is misprinted as 24. 
In the open hearth ( O H )  furnace the only explicit constraints are a mass 

balance,  

X17 = 0.92(x14 + X15 -~- X16 ) (E5) 

and a capacity limit 

2.0 i> x16 + 1.33(x14 + x15 ) . (I4) 

The  steel plant variable cost to be minimized reflects the high cost of the SiC 

additive and relative economy of the more  modern  BOF 

u s ~ 180x12 q- 15x13 -I- 26x17 , (0) 

Steel Plant Results 

To save space, the results of the steel plant analysis are presented here without 
the intermediate details. These results could be confirmed numerically by solving 
linear programs for a range of values of the coupling parameter ,  the hot iron rate 
H.  The active constraints, aside from the parametric  constraints E l ,  E2 and E3 
known in advance to be active, turn out to be the remaining B O F  and O H  mass 
balances E4 and E5, together with the inequalities I1 (BOF hot iron max),  I3 
(SiC max),  I4 ( O H  capacity) and the non-negativity of the O H  hot iron. Using 
these linear equations to eliminate all but the BOF home scrap rate Xl0 and the 
parametr ic  hot iron rate H reduces the steel plant cost to 

v s = 1 1 8 . 6 -  1 3 . 1 H ,  (21) 
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s u b j e c t  t o  

1 . 8 7 ~  < H ~ < 2 . 2 4 ,  

x l0  ~< 1 . 2 8 6 ,  

( 2 2 )  

( 2 3 )  

T h u s  t h e  s o l u t i o n  is n o t  u n i q u e ;  a n y  v a l u e  in  t h e  r a n g e  0 ~< Xl0 ~ 1 .286  is o p t i m a l .  

Table I. Production schedules 

Unit  Variable Present study R&S Remarks 

Rate Cost Rate Cost 

BF1 Sinter 0.23 4.8 1.70 35.7 
BF1 Pellet 1.23 36.8 0 0 
BF1 Coke 0.55 13.8 0.804 20.1 
BF1 Total cost 55.4 55.8 
BF1 Hot iron 1.28 (43.3) 1.215 (45.9) 

BF2 Sinter 0.093 2.0 0.564 11.8 
BF2 Pellet 0.58 17.4 0 0 
BF2 Coke 0.30 7.5 0.274 6.8 
BF2 Total cost 26.9 18.6 
BF2 Hot iron 0.59 (45.4) 0.403 (46.2) 

Total hot iron 1.87 82.3(44.0) 1.618 74.4(46.0) 

BOF Hot iron 1.87 82.3 1.618 74.4 
BOF SiC 0.078 14.0 0.1 18.0 
BOF Iron/SiC 24.0 16.18 

0.25 11.6 
[-0.0221 [-4.0] 

BOF Home scrap 0 0 0 0 
BOF Bought scrap 1.40 0 [1.605] 0 

[-0.221 0 
1.38 0 

BOF Crude steel 2.93 44.0 2.902 43.5 
Total BOF cost 140.3(47.9) 143.5 (49.4) 

OH Hot iron 0 0 0 0 
OH Home scrap 1.286 0 1.285 0 
OH Bought scrap 0.219 0 0.218 0 
OH Crude steel 1.39 36.0 1.383 36.0 
OH Capacity 2.0 2.0 
Total OH cost 36.0 ($26) 36.0 ($26) 

Upper bound = 1.7 

2.6 saving 

0.8 saving 

2.0 saving 

R&S infeasible (<24) 
Hot iron shortage 
SiC adjustment 

Original plan 
Scrap adjustment 
Adjusted plan 
Upper bound = 3.5 
Includes iron cost 

At upper bound 
Operating cost only 

Total Crude steel 4.29 176.3 4.29 179.5 $3.2(106)/yr saving 
Home scrap 1.29 1.29 30% recycled 
Finished steel 3.00 (58.8) 3.00 (59.8) 1.0 reduction 

Rates in 10  6 tons/year. Costs in 10 6 US dollars (c. 1971). Numbers in parentheses ( ) are in 
S/ton. 
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Optimizing the Coupling Parameter Value 

Equat ion (21) shows that the minimum steel plant variable cost vs decreases with 
H,  whereas Equation (20) proves that the total blast furnace cost increases with 
H. Adding the two costs gives the system cost v to be minimized with respect to H 

v = v s + v b = 1 1 8 . 6 -  1 3 . 1 H +  v b , 

Differentiation of this total with respect to H shows that despite the negative 
coefficient of H in the steel plant cost, inequality (20) implies that the total cost 
strictly increases wi th/ - /  

dv/dH > 40.2 - 13.1 = 27.1 > 0.  

Hence  H must be made as small as possible. By inequality (22) it follows that the 
globally minimizing value is H** = 1.87. This value contradicts the 1.618 found by 
R&S (p. 312), which gives an infeasible schedule violating the SiC constraint (13). 
The misprint noted there may have been coded into their computation. 

The corresponding steel production schedule is generated by working through 
the eliminated active equations. Together  with the BF schedule to be generated 
next, this steel production schedule is displayed in Table I. The steel plant 
component  of the minimum variable cost is v s = 118.6 - 13.1(1.87) = 94.1 million 

dollars annually. 

Blast Furnace Rate Optimization 

The optimal BF rates for H** = 1.87 are obtained by minimizing the convex BF 
total variable cost v l (H1)+  v2(H2) from Equations (17-1) subject to the mass 
balance H 1 + H 2 = 1.87. The results are H~* = 1.28 and H~* = 0.59, from which 
Equations (16-1) generate the BF feed schedule displayed in the "Present  Study" 
column of Table I. BF total variable cost from Equations (17-1) is v = 55.4 + 
26.9 = 82.3 million dollars annually. Adding the 94.1 from the optimized steel 
plant gives a total variable cost of 176.3 millionS/year. 

Comparison 

The column labelled "R&S"  in Table I contains the production schedule obtained 
by Ray and Szekeley to allow comparison with the present study. This is a bit 
artificial because the R&S steel plant schedule uses more SiC than permitted by 
the SiC limit (I3). This falsely allows some of the expensive hot iron to be 
replaced by scrap which is free, giving a schedule which, although apparently 
cheaper,  would not really meet the steel demand. 

To permit easy although not quite accurate comparison, the correct steel plant 
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schedule of the present study was combined with the R&S blast furnace schedule 
to obtain a feasible plan. The SiC rate was lowered as needed, and the additional 
hot iron required was charged as it it were purchased externally at the cost of that 
produced by R&S. With this simplication, favorable to the corrected R&S plan, 
one can say that the globally minimum cost schedule costs US$3.2 million less per 
annum, at least, than that obtained by the linearization algorithm. This would 
reduce the unit variable s~eel cost by at least one US dollar per ton. 

An environmental bonus would be the reduced coke consumption of the 
optimal schedule (21.3 tons/yr) compared to the 26.9tons/yr needed by R&S 
even to produce their infeasibly small amount of iron. The extra iron needed by 
R&S to meet the steel demand would of course require even more coke 
somewhere else. The wasted carbon not only costs money; it loads the atmos- 
phere with carbon dioxide, thereby contributing unnecessarily to the greenhouse 
effect. 

Concluding Discussion 

This study illuminates the interplay between analysis and computation in global 
optimization. Convex problems can be solved entirely by computer because there 
local minimization algorithms find the global optimum. But when convexity is 
missing it is dangerous to apply convex algorithms to approximations that are 
convex only locally. Instead one must proceed cautiously with the most careful 
analysis possible under the circumstances before resorting to the computer. 

In the present study the structure permitted decomposition of the problem into 
three subproblems: the two nonlinear blast furnaces and the linear steel plant. 
This decoupling did more than save computation; it was essential for isolating the 
nonlinearities for correct analysis. The nonlinear analysis itself required using the 
constraints to reduce the number of variables from four to two. Then functional 
analysis permitted concentration of all the nonlinearity into a partial optimization 
with respect .to a single variable, for which the analysis could have been entirely 
graphical. The nonlinear analysis needed was elementary, requiring only routine 
study of a second partial derivative. Of theoretical interest to global optimizers is 
that the function was dc, a difference of convex functions, although this property 
was not used in its optimization. The resulting subproblem of finding the blast 
furnace outputs was shown to have an increasing convex objective and a single 
linear constraint, parametric in a single coupling variable. The linear steel plant 
can be solved either by monotonicity analysis or computed by a parametric 
sequence of linear programs. 

The model is presented to the global optimization community as a test problem 
for general global optimization algorithms that rely on computation rather than 
analysis. The challenge would be to find the global optimum computationally 
using the original formulation with its score of variables and pair of nonlinear 
constraints. 
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It may be only rarely that a large complicated problem can be reduced to one in 
a single variable as was possible here. But reduction is worth trying, especially on 
the largely monotonic but non-convex problems encountered in industry, for then 
at least one can prove that the solution obtained is optimum globally. The three 
million dollar per year saving obtained here is, of course, a powerful economic 
incentive for careful analysis. 
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Notation and Nomenclature 

Mass rates are in (106)tons/year; costs in 
Parameters are capitalized. 

S/ton; $ represent US$ c. 1970. 

Symbol Name of variable 
H combined hot iron rate (X 4 + Xs) 
rl, r 2 sinter/iron ratio for BF1 and BF2 
Ul, u 2 unit composition cost variation for BF1 and BF2 
v~, v 2 variable feed cost for BF1 and BF2 
vb(H) total variable feed cost for both blast furnaces 
v~(H) total variable cost for both steel furnaces 
x 1 sintered iron ore rate into BF1 
x 2 pelleted iron ore rate into BF1 
x3 coke rate into BF1 
X 4 hot iron rate from BF1 
x 5 sintered iron ore rate into BF2 
x6 pelleted iron ore rate into BF2 
x 7 coke rate into BF2 
X 8 hot iron rate from BF2 
x 9 hot iron to basic oxygen furnace (BOF) 
xl0 home scrap to BOF 
xl~ bought scrap to BOF 
x~2 silicon carbide to BOF 
x13 crude steel from BOF 
x14 home scrap to open-hearth furnace (OH)  
x~s bought scrap to OH 
x16 hot iron to OH 
x~7 crude steel from OH 
x18 total crude steel 
x19 total home scrap 
x20 total bought scrap 
I11, Yz additional hot iron from BF1 and BF2 
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